

Plano de Ensino Campus: II – Belo Horizonte

DISCIPLINA: Circuitos Elétricos I CÓDIGO: 2EE.006

Validade: a partir de maio/2008.

Eixo: Eletromagnetismo e Circuitos Elétricos

Carga Horária: 90 horas-aulas Semanal: 6 aulas Créditos: 6

Modalidade: Teórica Integralização: Classificação do Conteúdo pelas DCN:

Ementa:

Tensão e corrente elétrica. Fontes de tensão e de corrente contínuas. Resistência elétrica. Indutância. Capacitância. Leis de Kirchhoff. Divisor de tensão e divisor de corrente. Técnicas de análise de circuitos: correntes de malha, tensões de nó, circuitos equivalentes de Thévenin e de Norton e Superposição. Fonte de tensão senoidal. Circuitos no domínio do tempo. Resposta do circuito em corrente alternada senoidal (c-a). Valor médio e valor eficaz. Circuito no domínio da frequência. Fasores e diagrama fasorial. Impedância e admitância. Potência em circuitos de ca: aparente, ativa e reativa. Fator de potência. Ressonância. Técnicas de análise de circuitos em c-a. Máxima transferência de potência. Geração trifásica. Cargas trifásicas equilibradas e desequilibradas. Potência em circuitos trifásicos.

Curso(s)	Período
Engenharia Elétrica	3

Departamento/Coordenação:

INTERDISCIPLINARIEDADES

Pré-requisitos	Código
Co-requisitos	
Física II	2DB.020
Disciplinas para as quais é pré-requisito / co-requisito	
 Laboratório de Circuitos Elétricos A 	2EE.007
Circuitos Elétricos II	2EE.009
Laboratório de Circuitos Elétricos B	2EE.010

Obj	Objetivos: A disciplina devera possibilitar ao estudante		
1	Calcular parâmetros em um circuito elétrico como tensão, corrente, potência,		
	etc		
2	Encontrar circuitos equivalentes através da associação de resistores,		
	capacitores e indutores		
3	Aplicar os métodos de análise e teorema de circuitos elétricos em corrente		
	continua e alternada		
4	Calcular potência em circuitos alternados		
5	Analisar circuitos trifásicos balanceados e desbalanceados		

Plano de Ensino Campus: II – Belo Horizonte

Unio	dades de ensino	Carga-horária horas-aula
1	Conceitos básicos de circuitos elétricos	2
	 Unidades do sistema 	
	Corrente e carga	
	Tensão	
	Energia e Potência	
	 Fontes de Tensão dependente e independentes 	
	Resistores	
2	Leis básicas	10
	• Lei de Ohm	
	 Lei de Kirchhoff para as correntes 	
	 Lei de Kirchhoff para as tensões 	
	 Resistores em série e divisor de tensão 	
	 Resistores em paralelo e divisor de corrente 	
	 Transformação Y - Δ e Δ - Y 	
	Aplicações	
3	Métodos de análise dos circuitos elétricos	12
	Análise Nodal	
	Análise por malha	
	 Aplicações 	
4	Teoremas dos circuitos elétricos	12
	 Definição de linearidade 	
	 Superposição 	
	 Transformação de fontes 	
	 Thevenin 	
	 Norton 	
	 Máxima Transferência de potência 	
	 Aplicações 	
5	Amplificadores operacionais	8
	 Amplificador operacional ideal 	
	 Amplificador Inversor 	
	 Amplificador Não-Inversor 	
	 Amplificador Somador 	
	 Amplificador Subtrator 	
	 Circuitos com amplificadores em cascata 	
	 Aplicações 	
6	Capacitores e indutores	4
	 Definição 	
	 Capacitores em série e paralelo 	
	 Indutores em série e paralelo 	
	 Aplicações 	

Plano de Ensino Campus: II – Belo Horizonte

	Horizonte
7 Funções senoidais e fasores	6
Definição	
 Aplicações em circuitos elétricos 	
Impedância e admintância	
Associações de impedância	
8 Análise de circuitos senoidais em regime permanente	14
 Definição de circuito alternado 	
Análise nodal	
Análise de malha	
 Teorema da superposição 	
Transformação de fontes	
Circuitos equivalentes de Thevenin e Norton	
Amplificadores operacionais em circuitos alternados	
Aplicações	
9 Potência em circuitos alternados	8
Potência instantânea e potência média	
Máxima transferência de potência	
Valor RMS	
Potência aparente e fator de potência	
Potência complexa	
Correção do fator de potência	
Aplicações	
10 Circuitos trifásicos balanceados e desbalanceados	14
Definição	
 Conexões Y-Y, Y- Δ, Δ -Y, Δ - Δ 	
Potência em circuitos trifásicos	
Total	90

Bibliografia Básica		
4	NILSSON, J. W., RIEDEL, S. A. Circuitos Elétricos. Pearson do Brasil, 8/e.	
ı	São Paulo, 2009.	
0	DORF, R. C., SVOBODA, J. A. Introdução aos Circuitos Elétricos. LTC, 8/e.	
4	Rio de Janeiro, 2012.	
2	HAYT Jr., W. H.; KEMMERLY, J. E. E DURBIN, S. M. Análise de Circuitos em Engenharia . McGraw-Hill/Bookman, 8/e. Porto Alegre, 2014.	
3	Engenharia. McGraw-Hill/Bookman, 8/e. Porto Alegre, 2014.	

Bib	Bibliografia Complementar	
4	ALEXANDER, C. K.; SADIKU, M. N. O. Fundamentos de Circuitos Elétricos.	
I	McGraw-Hill/Bookman, 5/e. Porto Alegre, 2013.	
2	IRWIN, RICHARD C. Análise Básica de Circuitos para a Engenharia. LTC,	
4	10/e. São Paulo, 2013.	
3	BOYLESTAD, R. L., Introdução à Análise de Circuitos, Prentice-Hall do	
3	Brasil, 12/e. São Paulo, 2012	
4	THOMAS, R. E.; ROSA, A. J., TOUSSAINT, G. J. Análise e Projeto de	

Plano de Ensino Campus: II – Belo Horizonte

	Circuitos Elétricos Lineares. Bookman, 6/e. Porto Alegre, 2011.	
_	ROBBINS, A. H., MILLER, W. C. Análise de Circuitos - Teoria e Prática.	
Э	ROBBINS, A. H., MILLER, W. C. Análise de Circuitos - Teoria e Prática . Volume 1. Cengage Learning, 4/e. São Paulo, 2010.	
6	ROBBINS, A. H., MILLER, W. C. Análise de Circuitos - Teoria e Prática.	
р	ROBBINS, A. H., MILLER, W. C. Análise de Circuitos - Teoria e Prática . Volume 2. Cengage Learning, 4/e. São Paulo, 2010.	

Bibliografia Adicional:

Referências adicionais, notas de aula, material didático e softwares de apoio serão disponibilizados no Sistema Acadêmico ou na plataforma Moodle Institucional do CEFET/MG, quando disponibilizada.

Professor (a) responsável:	Data:
José Hissa Ferreira	18/09/2014
Coordenador (a) do curso:	Data:
(4) 45 54.55	
José Hissa Ferreira	18/09/2014